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AIIInd-We give n,orous upper and lower bounds to frequeneies of vibration of a thin rectal\lUlar elastic
plate with a variable lenatb reinforciDg rib bonded to it alonl a portion of a center line of the plate. The
intent of this study Is to demoDStrate by a relatively simple but realistic example bow the lower bound
method can be u§ed electively for composite structures and to show that the method can be applied mucb
more widely.

I. INTRODUCTION

In this article we give rigorous lower and upper bounds for the frequencies of vibration of a
rectanplar plate reinforced by a rib bonded to it along a portion ·of a center line. The lower
bounds are obtained by intermediate problems [21. and the upper bounds· are found by the
Rayleigh-Ritz procedure. These calculations serve to demonstrate how these techniques can be
utilized to compute rigorous estimates for frequencies of a considerable variety of built-up
structures. We believe that our results given here are the first rigorous two-sided bounds for
this kind of structure.

While it is true that Rayleigh-Ritz upper bound calculations frequently give very good
eigenvalue estimates that can·be further improved by extrapolation (see, e.,. (6 or II] in which
extrapolated bounds gave the exact eigenvalues), this is not always the case. In those problems
in which the exact values are not a priori known one has no guarantee, without auxiliary
information equivalent to lower bounds, that the extrapolated values are close to the exact
values. In fact, in some cases the Ritz eigenvalues do not get close! An example is shown later
in· this article in which the upper bounds increase without limit as the beam is more rigidly
attached to the plate while the lower bounds do tend toward appropriate limiting values. Thus,
even tho. the Ritz calculations use natural mode shapes that are admissible, such vectors do
not give good bounds because they cannot satisfy the geometric boundary conditions that arise
in the limit.

Earlier applications of these techniques have provided good rigorous bounds for
membrane(l4]. beam[l31. and plate problems [3-5, 121. In addition, we have shown recently[10]
that they can be used effectivelY in a simple plate-beam structure chosen for computational
ease. There the beam and the plate were taken to be simply supported, and the beam. ran the
full length of the plate. In contrast, the problem treated here deals with a simply supported plate
reinforced with an elastically attached free beam of length less than that of the plate. The variable
length in itself quite substantially changes the analysis. and the free end conditions on the beam
add to the computational complexity.

While the principal purpose of this study is to demonstrate how the lower bound methods
can be used to obtain rigorous estimates for the frequencies of relatively simple but realistic
composite structures. the numerical results we give may be of sQme practical use as well. In
keeping with the goal of this work, we have restricted our calculations to the estimation of the
freqUencies of a simple structure and to only one of the symmetry classes of mode shapes. We
give quite a Jeneral discussion of how the methods we employ can be extended to far wider
classes of problems.

In· the next section we describe the mathematical model of the structure we have in mind

tThis wort was supported by the Department of the Navy. Naval Sea Command under contrael No. NOOO24-81-C-S301.
5301.
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and then in the following section give a sketch of the lower and upper bound methods.
Subsequently, the results of our calculations are given along with an indication of the effect of
changing the pnncipal parameters in the bound methods. In the last section we give a discussion
of the ways in which the methods used can be employed in problems related to the one studied
here.

2. THE STRUCTURAL MODEL

(1) Mathematical description
In our model of the structure (see Fig. 1) we describe the plate by classical thm plate theory and

the beam by simple bending and torsion. The elastic bond between the beam and the plate IS

represented by aconstant modulus K thatgives rise to an effective force q per unit area on the plate
that has a resultant force Q and a moment M (see Fig. 2). The force q is proportional to the
difference between the deftection of the bottom of the rib and the top of the plate.

This model gives rise to the following coupled system of equations for the beam deflection
v, the beam torsion 0, and the plate deftection w:

where

B~+Q- CTW
2
V =0, - e < x < e, t

d2v/dx2 =0, c1v/tlx3 =0, X =± e, J

d
2

8 )Cp+ M +7'w
28 =0, -e<x < e,

d8/dx=O, x=±e,

D V4 w - q - pw2 W = 0, - a < x < a, - b < y < b, 1

iw =0, V2w = 0, X = ± a and y =±b,

Q(x) = f q(x,y)dy=K[L'c -W(x,y)dY+2cv(X)].-e<x<e,

Jc [Jc 2c
3

]M(x) = _/q(x,y)dy =K -c - w(x,y)ydy +T 8(x) ,- e < x < e,

q(x,y) =K[v(x) + y6(x) - w(x,y)l, - e < x < e, - c < y < c.

(1)

(2)

(3)

(4)

In the above equations, Band C are the beam flexural and tomonal rigidity, D is the plate
flexural ridigity, p is the plate mass per unit length, CT is the beam mass per unit length, 7' is the
beam mass polar moment of inertia per unit length, and w is the symbol for the vibrational
frequencies

Because of the physical symmetry of the rib reinforced plate shown in Fig. I, the solutions
of the system of eqns 0)-(4) belong to symmetry classes that depend on whether w is odd or
even in y. If w is even in y, M is independent of w; and if w is odd, Q is independent of w
Thus for solutions even in y the system that governs the motion is (1), (3) and the first and third
of (4), i.e. coupled beam bending and plate deflection even in y, while for odd solutions it is (2),
(3) and the second and third of (4), i.e. coupled beam torsion and plate deflection odd in y.
Further, there is odd-even symmetry with respect to x so that each of these symmetry classes
can be decomposed into the subclass that are even or odd with respect to x. All of the
computations reported here were done in the symmetry class of solutions even in x and in y

The starting point of our lower bound calculations is the simpler uncoupled problem that results
when K is put equal to zero. Then the system (1)-(3) is totally uncoupled, and the
frequencies and mode shapes are obtained by solving the vibration problem for each of the
pieces separately. In addition, the mode shapes of the uncoupled problem are suitable functions
for the Rayleigh-Ritz problem upper bound calculations. Naturally, all of the symmetry
considerations apply equally well to the uncoupled problem.
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Uncoupled models have been used in earlier work with good success. For instance, in (6) the
analysis of the free vibrations of composite structures in terms of compoaeDt IPtNIes was
presented and in (7) the use of component mode analysis of nonliDoar ud JIOIMX)uervatlve
systems was introduced. In both of these articles a Rayleigh-Ritz analysis was used with the
constraint conditions between components produced by Laaranae multipliers.

(2) The UIIcoupled problem
We give bere the solutions for the even-even symmetry class in whicb we shall make the
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computations. The beam eigenfunctions v~ are

(uet l12

v~ =(cosh213,. +COS213,.)1I2 (cos 13,. . cosh l3,.x/e +cosh 13,. . cosh l3,.xl e)

,." =0, 1,2, ... ,

with the eigenvalues

B(l3iJe),

where 13,. are the nonnegative roots of the equation

tan 13 +tanh 13 == 0

indexed in increasing order.
The eigenfunctions w~n of the plate are

w~n(X,Y) = (abprl/2 cos (2m - l)7rx/2a cos (2n - l)7ry/2b,

m,n = 1,2, .. ,

with the eigenvalues

The normalizing constants have been determined so that

af. v~(x)v~x)dx =u,..

and

pfa fb W~n(X'Y)W~'n{x,y)dxdy =Omm'Onn"
-a -b

3 THE LOWER AND UPPER BOUND METHODS

(l) Lower bounds
The squares of the frequencies ware the eigenvalues Aof the coupled system (1)-(4) that

describes the deftections of the plate and the beam, however here it is much more convenient to
consider the eigenvalues as successive stationary values of the quotient given by

R(u) =J(u)/lIuI12
•

The quadratic from J(u), which is twice the energy of deformation of the system, is given by

J(u) = Bf. 1v "12dx +Dfa fb IAwI2dxdy +K fc f.lv -wl
2 dxdy.

The norm /1-1/ of the Hilbert space %=V[(-e,e);u]xL2[(-a,a)x(-b,b);p] in which the
problem is set is stated by
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function v and as its second component a plate deflection function KI, which vanishes at the
edges of the plate. Note that for vibrations of this system that are not even in y additional terms
would enter J and 11·11 to account for torsion of the beam.

The lower bound method that we use here makes use of the natural decomposition
J =jO +J', is which jO is the sum of the first two terms in J and J' is the third. An important
fact is that jO, with the same boundary conditions on w as J, corresponds to a spectrally
resolvable operator in 1{, i.e. an operator for which the eigenvalues and eigenvectors are
explicitly known. Indeed, jO is just J with K, the coupling between the beam and the plate set
equal to zero. The eigenfunctions are of the form [V,.,O] or (O,w"",], where v,.(x), Il =0, 1, ... ,
are the even free beam eigenfunctions and the functions w"'" are the simply supported plate
eigenfunctions. The eigenfunctions of jO are chosen to be orthonormal in 'Jt. The second
important fact is that J' is a positive quadratic form that can be bounded below by an increasing
family of quadratic forms of finite rank.

The lower bound method has been described extensively in [l,2,15). However, here we
summarize briefly the essence of the procedure and refer the reader to the references for those
details which we must leave out. We obtain our lower bounds by constructing a family Jtt,! of
quadratic forms that increase with nand k, that lie below J, and that correspond to operators
Ad in 1t for which we can determine the eigenvalues A:.k to any desired accuracy. These
eigenvalues, which increase with n and with k, give the lower bounds

The quadratic forms r·k require for their construction the spectral truncation of order n of
r defined by

]",0(11) =t !(II, II~WA~+A~+I[(II' u)- t 1(11, u~F].
~-o _-0

where A: and u: are the known eigenvalues (in increasing order) and orthonormal eigenvectors
of r. The forms laP are an increasing family of lower approximations of r. In addition, we
construct a lower increasing family J'k of approximations to J' as follows: Observe that J' has
the form

l'(u) =Kff Iv - wl2 dxdy =(Tu,Tu)',

where T is the bounded operator from 1t to 1(' =L2
{(- e,e) x (- e,e)] expressed by

T[v,w](x,y) =KII2[v(x) - w(x,y)].

The approximations J'k are given in the form

where pk is the orthogonal projection on span {Pit P2, ... , Pk}, where Pk are appropriate linearly
independent vectors in the domain of T*, the adjoint of 1. Here T* is easily calculated from
the defining relation (Tu,f)' =(u, T*f)'t/UE1{, fE1(', 10 be

T*f= KII2[Olu) fc f(· ,y)dy,- flp].

where the values of f outside (- e,e) x (- e,c) are zero.
The quadratic form r·k that gives the lower bounds is defined by

and the bounded self-adjoint operator A"·k corresponding to it is
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where A"·llu == I:=I(U,U~A~U~ +AII+I[U -I:=l(u,u~)u<;]. The lower bounds are obtained from the
roots of the determinantal equation

which can be put in the matrix form

det{A/(A~+1 - A) +BDB* +C} == 0,

where A, B, C and D are given by

A == «T*p"T*Pl»' B == «T*p"u:»,

D - ( All H - A; 0)
- ('\,,+I-A)(,\;-,\)"··

A complete discussion of the calculation of the eigenvalues A:.k is given in[2].
In our applications we take the generating vectors PI of the projection pk to be orthogonal

of the form v~x)· cos S 11'y/c, r == 0, 1, . ,S == 0, I, .... These form a complete system in the
even-even subspace of 'It'. It should be noted that this choice of the p's has a number of
calculational advantages: The matrices A and C are diagonal, and the matrix B has a
particularly simple structure. The index k is given by k == (i' + I)(I +l) when rand s run
through i' and I, respectively. Some improvements in the bounds obtained here are possible
using the recently developed methods given in[9].

(2) Upper bound method
The Rayleigh-Ritz method, i.e. the calculation of the stationary values of R(u) in a finite

dimensional space, gives an effective means for gettina upper bounds. In the even-even
symmetry class we have taken the spanning vectors of the Rayleilb-Ritz. space to be
eigenvectors u~ of jO in this subspace. The inner products needed in the Rayleigh-Ritz
calculation are elementary.

4. RESULTS
In this section we present a selection of the calculations that we have carried out for free

beams of rectangular section bonded to the plates. These show how the eilenfrequencies
change as the aspect of the plate, the length of the reinforcing beam, and the depth of the beam
are changed. We also examine what happens as the modulus K of elastic attachment is varied.
Another part of our results shows the way the lower bounds improve as the number k of
generating functions or the index n of the truncation are increased. For comparison we give
also some of our results presented elsewhere (10] for frequencies of the same plates reinforced
by full length simply supported beams.

The plate side length a and thickness h have been fixed and other parameters have been
varied. The aspect ratio a/b ranged from 1to 4, and the leDlth of the reinforcing beam ran from
1/2 to I times the length o. The beam was taken to be of solid rectanplar cross-section of width
equal to 1/40 of the plate length. The depth d of the beam was varied from 1 to 10 times the
plate thickness, and the modulus K was changed over five orders of mapitude from t(}3 to 10'.
Although we have assumed that the material properties of the beam and plate are the same, this
specilization is not necessary. Indeed. each of the parameters B, D, K, 0', p, a, b, c and e, as well
as the indices that govern the upper and lower bounds, can be specified arbitrarily in the
computer programs we have used to obtain our numerical results. Material properties of the
plate and of the beam were chosen to be typical of aluminum.

(1) Variations with geometry
Tables 1-3 show the frequencies of the plate-beam system as the beam length 2e, the beam

depth d, and the plate width 2b are varied. The plate length and thickness were held constant at
40 inches (about 1m) and 0.10 in. (about 2.5 mm), respectively; K was kept at 1()4. The beam to
plate length ratio, which varied from 0.5 to I, and the plate aspect ratio (1.0-4.0) are shown on
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Table 1. Bounds for the first five eJgenvalues of the coupled system with reioforciD& rib Ielllth one-haJf of
the plate lelllth (even-even)

A ~ 10-4

v

ela • 0.50. K• 104

v d/h alb =4.0 alb = 2.0 alb =1 0

1 34.215 34.239 3.1915 3.1933 53349 .53374

2 80.799 80.839 22.739 22.752 13 185 13.192

3 1.0 215.70 216.07 113.08 113.31 13.743 13.752

4 557.26 557.76 175.25 175.43 43 938 43.953

5 1235.3 1240 6 269.82 269 94 89.613 89.694

1 30.018 30.042 3.0176 3.0206 .53799 .54002

2 80.120 80.204 23 945 23.973 12 791 12.801

3 2.0 227.51 229.40 122.45 123.97 14.451 14.478

4 643.45 643.83 165.00 165.23 44 193 44.230

5 1370.6 1391.4 264.27 264.48 86.862 87.026

1 22.678 22.730 2.7399 2.7599 .59346 .61773

2 108.06 108.24 39.256 39.690 11.875 11.917

3 5.0 278 45 282.55 142.84 143.84 20.155 20.605

4 899.70 923.47 159.31 161 78 51.996 53.056

5 1898.2 1908.9 271.68 271.83 81.060 81.450

1 16.155 16.237 2.2429 2.2733 .55338 .59021

2 144.52 147.16 54.123 56.835 10.754 10.825

3 10.0 547.91 550.08 127.91 128.54 23.133 24.253

4 1008.1 1031.9 199.78 201.08 58.323 63.601

5 1683.5 1695.1 353.30 358.58 76.478 77.080
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each table. Lower boUDds were calculated with r= 4, S=5, so that the total k = (r+ 1) • (§ +1)
of vectors Pll used in approximating J' was 30. The order n of the spectral truncation was taken
to be 50. The Rayleigh-Ritz upper bollnds were calculated using a space spanned by eiIbtY
ei,envectors of J6. These were v,.. 1.£ =0, 1, ... ,19 and w~, m =1, 2, .. , , 10, n =1,2••.• 6. In
each column the lower bounds appear on the left and the upper bounds on the ri,rht. Thus. for
example, when tla =0.75, alb =2.0 and dlh = 2.0, we give the rigorous bounds in the even­
even symmetry class

130.24:s A3 x 10-":s 131.08.

The lower bounds reported in our tables were obtained by truncatina to five fipres the
values calculated in double precision (about sixteen decimal places); the upper bolUlds were
obtained by truncating to five figures and adding 1 to the fifth place.

For comparison we give in Table 4 the uncoupled eigenfrequencies of the same symmetry
class for the plates and the full-length free beamst and in Table 5 the upper and lower bounds
reported for the same plates reinforced by full-length elastically attached simply IlIPPOltld
beams[10]. The sizes of the upper and lower bound calculation were the same as reported here.

Our first Observation concerning the bounds of Tables 1-3 is that relatively modest
calculations produced quite acceptable bounds for the eigenvalues.

Next, comparing Tables 1-3 with the plate eigenvalues in Table 4, it is clear that the main
effect of the thinnest beams (dlh = 1.0) is to lower the lowest frequencies due to mass 1oactiDa.
However as the heiaht of the beam is increased, the inftuence of the free beams on the plate
frequencies is lUghIy variable, particularly for the shorter beams. This is 10 be contrasted with
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Table 2 Bounds for tbe mst five eigenvalues of the coupled system wltb reinforcingnb length threequarters of
the plate length (even-even)

l- x 10-"
v

ela ; 0 75. K ; 104

v din alb = 4 0 alb = 2 0 alb = 1 0

1 33 402 33 432 3 1482 3 1504 0.5306& o 53086

2 75.103 75.254 22 111 22 183 13 157 13 16&

3 1 0 211. 22 211. 93 112 42 112.77 13 540 13 582

4 546.7& 546.87 173 19 173.41 43.209 43 257

5 12154 1225.6 259 55 259 87 89 056 89 145

1 28.831 28.858 2 9566 2 9596 o 54224 o 54336

2 71 902 72 570 23 738 24 130 12 669 12 680

3 2 0 234.64 236.45 130 24 131 08 14 618 14 895

4 685 00 689.72 161 88 162.17 43 215 43 528

5 1435 9 1522 9 247 04 247.85 85 901 86 055

1 21 310 21 371 2 9409 2 9799 a 78970 o 83007

2 81 216 83.447 35 940 37 154 11 667 11 733

3 5 0 556 35 567 04 141 00 141 46 20 184 20 788
4 1112 3 1206 0 213 79 214.97 48.299 49 756

5 1868 2 1879 9 254 79 261 08 79.604 79 975

1 15.487 15.677 2 7997 2 9374 o 97996 1.1343

2 157 06 157 95 80204 80.770 10 489 10 620

3 10 0 728 38 800 21 125.59 126 28 26.200 26 448

4 1646.1 1658.8 231 67 232 65 72 129 72 982
5 1694 4 17224 288 78 297 65 83 176 84 941

the stiffening effect of increasing beam height whIch increases the eigenvalues as shown tn
Table 5 for elastically attached simply supported beams; this increase in eigenvalues appears
also to a substantial extent for the fuU-Iength free beams as shown In Table 3. However, it IS

difficult to guess even the direction of the changes in frequencies for beams of intermediate
length as the beam height is changed due to the compensatmg influences of mcreased beam
stiffness, proportional to d3

, and increased beam mass, proportional to d.
Two other effects are to be noted In comparing Tables 3 and 5. The first is the very slight

lowering of the eigenfrequencies for beams with dl h less than 10.0 when the ends of the beam
are not restrained. The second is the deterIOration of the accuracy of the lower bounds for deeper
free beams compared with the results for the corresponding simply supported beams.

(2) VariatIOn with the Stiffness K
Tables 6 and 7 show an interestlng behavior of the bounds as K is mcreased. The lower

bounds tend toward a limiting value while the upper bounds keep getting larger. This is because
the lower bounds move upward and are lower bounds for the beam rigidly attached to the plate.
On the other hand, the upper bounds obtained from the vectors we have chosen cannot give
good bounds for that limiting problem since they cannot satisfy the geometric boundary
conditions that arise in the limit as K gets large. We regard the limiting model as somewhat
unsatisfactory, for in it the beam imposes perfect rigidity against bending of the plate in the y
direction along the strip of attachment where the beam becomes rigidly bonded to the plate.

The results of Table 6 were obtained by taking k =30 (f =5. S '= 5) and n =50 and those of
Table 7 by taking k =60 (r = 10. S= 5) and n = 100. Although the lower bounds are improved in
Table 7. there are no essential differences between the two sets of results.
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Table 3. Bounds for the first live eJlenvalues of the coupJed system with reiDforciaa rib attadlecl 110111 full
leactII of the plate (even-even)

). • 10-~
v

ela = 1 O. K= 10~

v d/h alb = 4.0 alb = 2.0 alb" 1.0

1 33.269 33.301 3 1416 3.1437 .53036 .53046
2 73 437 73.486 22 043 22.055 13.146 13.155
3 1 0 205.30 205.64 111, 99 112.18 13.579 13.585
4 530.90 533 17 172.84 173 07 43.013 43.031
5 996.91 1210.8 256.33 256.63 89.000 89.093

1 28.639 28.667 2.9507 2.9527 .54507 .54528
2 72.630 72.822 25.815 25.923 12.647 12.657
3 2.0 246.91 250.85 141.59 143.82 15.806 15.891
4 688.20 730.64 161.32 161.60 44.051 44.152
5 1263.4 1724.6 243.39 243.84 85.767 85.928

1 21.422 21.462 3~2896 3.3065 1.0119 1.0283
2 140.08 153.73 68.942 75.125 11.849 11.877
3 5.0 554.07 745.75 140.51 140.95 24.905 25.686
4 1321. 9 1788.6 232.85 256.66 70.169 79.184
5 1858.9 1871,0 270.10 272.12 79.451 79.826

1 20.157 20.811 6.7492 7.3061 2.9269 3.3178
2 212.04 336.08 107.44 123.75 12.325 12.979
3 10.0 1103.6 1309.4 125.89 126.87 26.850 27.454
4 1638.7 1652.4 228.57 282.19 73.955 75.220
5 1792.6 1917.2 313.27 388.30 91.854 105.31

Table 4. Eipnvalues for the lIIJCOUP1ed plate aad full._ beam (even-even)
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UncoupJed Plate Uncoupled Full-length BeaM

A • 10·" ). • 10·"
v v

v e/b " 4.0 alb· 2.0 e/b " 1.0 d/h • 1.0 d/h • 2.0 d/h • 5.0 d/h • 10.0

1 39.794 3.4424 .55078 0.0000 0.0000 0.0000 0.0000

2 86.059 23.270 13.769 1.9878 7.9513 49.696 198.78

3 231.47 115.80 13.769 58.049 232.20 1451.2 S804.9

4 581.76 188.50 44.613 353.97 1415.9 8849.3 35397.

5 1295.6 278.83 93.082 1223.9 4895.8 30599. 122394.

(3) ImproHment of tile lower boUllds
Tables 8 and 9 show the improvements that are obtained by increasing k and n. In our

exploratory calculations we have found that increases in ;- were of much greater effect than
increases in i, hence i is kept fixed. The results for tla =0.75 and e/a =1.0 are liven since
there is room for sipificant improvement for these lengths; lower bounds for e/a == OJ are
already quite good as is shown by Table 1. In general, significant improvement occurs when the
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Table S. Bounds for the first five eipnvalues of coupled system with full lelllth simply supported
reinforeiDa rib (eveo-even)

A x 10-4

v

el a = 1 O. K = 104

\J din alb = 4 a alb = 2 a alb = 1 a

1 33.269 33 301 3 1417 3 1437 53036 53046
2 73 453 73 488 22 052 22 056 13.146 13 155
3 1 a 205.63 205 69 112 19 112 20 13 584 13 585
4 533.42 533 51 172 84 173 07 43 017 43 031
5 1212 1 1212.4 256.34 256 63 89 000 89 090

1 28.640 28 667 2 9509 2.9527 54523 54532
2 72.875 72.903 25 965 25 968 12 647 12 657
3 2.0 252.53 252 56 144 51 144 64 15 902 15 911
4 742.54 742.82 161.32 161.60 44 168 44 176
5 1769.6 1772 4 243 52 243 87 85 769 85 918

1 21.458 21 479 3.3159 3 3172 1 0336 1 0341
2 165.02 165.08 78.761 79 108 11 868 11 882
3 5.0 901.08 905 23 140 55 140 94 25.674 25 860
4 1859 1 1870.9 268 90 269 03 79 450 79 781
5 2052 9 2077 .0 271 36 273.88 80.399 81 792

1 21.446 21.459 7 7713 7 7729 3.4694 3 4811
2 615.48 617.18 125 66 126.14 13.272 13 278
3 10.0 1639.8 1652 3 132.50 133 63 27 404 27 602
4 1685.4 1705 0 291.05 293 78 74 833 75 307
5 2050.1 2061 a 633.61 640 58 105 63 107 93

Table 6. 80uIIds for the o..values of a reiDforcod plate. Elect of coeffiCIent of attachment. k =30, n =SO

A x 10.4

\J

alb· 2.0, e/a • 0.75, dIn· 5.0, k = 30, n = 50

\J K = 103 K • 104 K = 106 K = 108

1 2.8682 2.8759 2 9409 2 9799 2.9554 3.2060 2 9555 3 4699

2 34.209 34.406 35.940 37.154 36 307 41.315 36.311 46 329

3 136.52 136.83 141.00 141 46 141. 55 158 23 141 55 188.84

4 198.35 199.47 213.79 214.97 215.29 230.20 215.30 258.88

5 225 22 226.96 254.79 261.08 260 11 281 34 260.16 308.86

trunication index n is increased; but when the gap between the lower bounds and the upper
bounds is large, the inftuence of increasing k is important. Roughly speaking, the computing
time is proportional to n and to k3 so that it is much more economical to raise n instead of k.

S EXTENSIONS

A great variety of reinforced plates are accessible to rigorous bounds for the eigen­
frequencies by the methods we have used here. We devote this short section to sketching some
of the possibilities.
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Table 7. 80UDds for the eiaeDvalues of a reinforced plate Elect of coefficient of attaclunent. Ie '"' 60,
II '"' loo

A • 10-~

"
alb z 2.0, ela z 0.75, dIn z 5.0, k » 60, n » 100

" J( • 103 J( • 10~ K • 106 K = 108

1 2.8745 2.8759 2 9707 2.9799 3 0107 3.2060 3.0115 3.4699

2 34 375 34.406 36.876 37.154 38.034 41.315 38.054 46.329

3 136.73 136.83 141. 30 141.46 142.35 158.23 142.38 188.84

4 199.16 199.47 214.64 214.97 216.66 230.20 216.70 258.88

5 226.51 226.96 259 46 261.08 267.26 281.34 267.36 308.86

Table 8 Bounds for the first five CJICIlvalues ofacoupled system with relnforcllll rib leqth three- quarters of
the plate lenatIL Meet of mcreasllllie and n

A
"

• 1O-~

alb· 2.0. ela "' 0.75, K • 10~

r. 4. r. 4" ~ : ~.
r z 9,

5 z 5 5 • 5 S • 5 Upper
k • 30 k·3O k z 60 k " 60 Bounds

" dIn n,. 50 n· 100 n z 50 n "' 100

1 3.1482 3.1493 3.1483 3.1495 3.1504

2 22.111 22.114 22.159 22.170 22.183

3 1.0 112.42 112.43 112.65 112.70 112.77

4 173.19 173.32 173 19 173.32 173.41

5 259.55 259.70 259.60 259.76 259.87

1 2.9566 2.9577 2.9572 2.9586 2.9596

2 23.738 23.780 23.939 24.056 24.130

3 2.0 130.24 130.31 130.70 130.91 131. 08

4 161.88 162.06 161.89 162.06 162.17

5 247.04 247.34 247.26 247 65 247.85

1 2.9409 2.9489 2.9552 2.9707 2.9799

2 35.940 36.118 36.445 36.876 37.154

3 5.0 141.00 141.28 141.02 141.30 141.46

4 213.79 214.47 213.92 214.64 214.97

5 254.79 257.52 255.91 259 46 261.08

1 2.7997 2.8268 2.8492 2.9040 2.9374

2 SO. 204 80.511 80.289 SO.614 SO. 770

3 10.0 125.59 126.00 125.62 126.06 126.28

4 231.67 232.34 231.70 232.36 232.65

5 288.78 292.29 290.65 295.39 297 65

245

The problems we have studied in this article can be modified in a large number of ways: The
material properties of the beam and of the plate can be different, and the beam need DOt be
rectanplar so that its stiftness B, its mass per unit length u, and the width 2c of the elastic
attachment can all be chosen independently. Further, the beam need not be attached &Iona the
center line, althouIb this eliminates the ,-symmetry and causes the bending of the plate to be
coupled with torsion as well as bending of the beam. In addition, the beam need Dot be

ss Vol 18. No J...E
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Table 9 Bounds for the first five eigenvalues of coupled system With relDforcmg rib attached along full
length of plate Effect of IDcreasing k and /I

" x 10-4
v

alb = 2.0, ela = 1.0, K = 104

r = 4, r = 4, r = 9 r = 9
S = 5 S= 5 S= 5' S= 5' Upper
k = 30 k = 30 k =60 k = 60 80unds

v d/h n = 50 n = 100 n = 50 n = 100

1 3 1416 3 1427 3 1416 3 1428 3 1437

2 22.043 22 045 22 050 22 052 22 055
3 1 0 111.99 112 00 112.13 112.15 112 18
4 172 84 172 98 172 84 172.98 173 07

5 256 33 256.52 256.33 256 52 256 63

1 2.9507 2 9517 2 9508 2 9518 2.9527

2 25.815 25 830 25.880 25.907 25.923
3 2 0 141. 59 141 92 142 95 143 52 143 82

4 161 32 161 49 161 32 161 49 161 60

5 243 39 243 64 243 44 243 70 243 84

1 3 2896 3 2933 3.2969 3.3030 3 3065

2 68 942 70 198 71 764 73 983 75 125

3 5 0 140 51 140 80 140.51 140.81 140.95
4 232.85 236 93 244.78 252 66 256 66
5 270 10 271 31 270.16 271 51 272 12

1 6.7492 6.8441 7 0079 7 1935 - 7.3061

2 107 44 110 56 115 57 120 96 123 75

3 10.0 125 89 126 24 125 94 126 42 126 87
4 228.57 235 70 257 67 274 65 282 19

5 313.27 317 18 329 80 358 38 388 30

symmetric in x. Further, one or more reinforcing beams not necessarily parallel to the edges of
the plate can be treated by relatively small modifications of the technique we have used here;
for instance, diagonal ribs are quite feasible.

Other extensions to reinforcements by beams of nonuniform sections or nonuniform elastic
bonds can be bandied by recourse to some of the procedures given in [2]. By employing some
of these ideas it should be possible to rigorously estimate the frequencies of plate-beam models
that approximate reinforcements attached by spot welding. As long as the plate is uniform,
rectangular, and simply supported on two opposite edges, its nonreinforced eigenfrequencies
and. mode shapes can be calculated. This means that the method we have given here can be
used for such boundary conditions with little change. However, if the plate is not uniform or
has other edge conditions, some modifications along the lines given in[3-5, or 8] may be needed
to find the lower bounds. In another direction, structures composed of several plates in the
same plane bonded to each other and to reinforcing ribs can also be treated by evident
extensions of the methods we have discussed here.
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